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ADSTRACT

An innovative hybrid, analog- diglial charge- donlain
icchnology, for the massive ly  paral le l  L’LS1 intplrn~en-
ialton o f  c e r t a i n  large scale ntairir-~wtor opcmitons,
h a s  mccnfly b e e n  Introduced. It e m p l o y s  a7rays  of
Charge Coupled/Charge Injection Devtce  cells holdtng
a7t analog matrix oj charge, u;hich  process diglial vectors
an parallel by means of binary, non-desiructtve charge
tra71sfer  o p e r a t i o n s .  7’he 17npaci of ihts  iech710iogy o n
7nasslvely pamlle[  p r o c e s s i n g  M dzscussed,  I’undanlen-
fally new classes of algor~th7ns,  specifically destgned for
this rtncrgtng  technology, as applied (O srgnal process-
ing, a7v derived.

1. IN’I’I{ODUCTION

The ever expanding capabilities of space missions’ data
acquisition systems is creating an unprecedel)ted  gap in
our ability to process the underlying massive volurl)e of
information. Thus, our goal at this paper is to present
a fundamentally new classes of algorithms, specifically
designed for emerging compact integrated systems conl-
posed of salable, high performance, massively parallel
computing units in charge-domain technology.

hlany  algorithms required for scientific modeling will
make frequent use of a few well defined, often function-
ally simple, but comptrtationally  very intensive data
processing operations, Those operations generally im-
pose a heavy burden on the computational power of a
conventional general-purpose computer, and run much
more efficiently on special-purpose processors t}lat are
specifically tuned to address a single intensive compu-
tation task only.

An innovative hybrid, analog-digital charge-domain
technology, for the mrxssively  parallel VI,SI implement-
ation of certain large scale matrix-vector operations,
has recently been developed and applied at Caltech

[1,2.3,5,6], I t  employs arrays  of  Charge Cou-
pled/Charge Injection Device (CCI)/CII))  cells hold-
ing an analog matrix of charge, which process digital
vectors in i)arallel  by means of binary, non-destructive
charge transfer operations.

Figure 1 shows a simplified sc}lernatic  of the CCD/CII)
array. Each cell in the array connects to an input col-
umn line and an output row line by means of a col-
umn gate and a row gate. Both gates together hold a
charge in the silicon substrate underneath them that
represents an analog matrix element. Ily default, the
matrix charge sits under the column gates. In the ba-
sic matrix-vector multiplication (MVM) mode of oper-
ation, for binary input vectors, the column gates serve
as binary-analog multipliers by transferring the matrix
charge towards the row gates 07tly if the input bit of
the column indicates a binary ‘one’. ‘1’he  charge trans-
ferred under the row gates is summed capacitively on
each output row line, yielding an analog output vector
which is the product of the binary input vector with
the analog charge matrix. By virtue of the CCI)/CID
device physics, the charge sensing at the output is of
a non-destructive nature, and the charge matrix is re-
stored in its original state simply by pushing the charge
back under the column gates.

A bit-serial digital-analog hfVNl  can bc obtained from a
sequence of binary-analog hlVM operations, by feeding
in successive vector input bits sequentially, and adding
the corresponding output contributions after scaling
them with the appropriate powers of two. A simple
~,arallel array of divide-by-two circuits at the output
accomplishes this task [3,6].

The particular choice of this unusual charge-domain
technology resulted from several considerations nc,t just
limited to issues of speed and parallelism. III compari-
son to other, more common parallel high-speed tech-
nology environments (digital CMOS, etc.), the distinct
virtues of our charge-domain technology for large-scale
special-purpose MVM operations are the following:
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Very High Density: The compactness of the
C~IJ/CII)  cell allows the integration of up to 10s CCIIS
011 a lcmz die (in a standard 2pm CX1OS technolo~v),
~,ro~,icli!]g  single-chip 100 GigaOPS  colnputation  ~)ower,

Very I.ow Power  Consumption: The charge stored
i]] ttlc ]l~atrix is conserved along tl)e compu ta t i on
l)rocess  because of the non-destructive nature of the
CCJJ/CII) operation. Ileuce,  the entire power con-
su~llption is localized at the interface of tbc array, for
clocking, 1/0 and matrix refresh purposes. l’his en-
ables the processor to operate at power  levels in the
lt~\f’/~”eraOI’S  range.

Scalal)ility:  The salable architecture of the CCl)/CII)
array allows t}]e interfacing of many individual proces-
sors in parallel, combining together to forrll effective
processing units of higher dimensionality,  still operat-
ing at norllinai  speed.

1 / 0  Flcxihility: Although an analog reI)reserltation
is used inside the array to obtain fast parallel con~puta-
tion, the architecture of the processor provides the flcx-
ihi]ity of a full digital interface, eliminating the band-
width and noise problems typical for analog interfacing.

Programming Flexibility: The architecture allows
for either optical (parallel, sustained [1]) or electronic
(semi-parallel, periodical [6]) loading of the charge ma-
trix. ‘1’he latter method requires interrupts, of duration
usually much shorter than the time interval in computa-
tion mode, for which the stored charge matrix remains
valid before a matrix refresh is needed.

A variety of hlVM processors of different dimensions
have been designed and tested at Caltech.  Prelimi-
nary results on a 128 x 128 working prototype, imple-
mented on a single 4rnmx  6mm die in 2~~m CCIIChf  OS
tect]nology} indicate a performance of approximately
1010 8-- bit multiply-accumulates per second. l’ro-
cessors with 1024 x 1024 cells will be realizable in the
mar fuLure.

2, IMPACT ON PARALLEL COMPUTA-
TIONAL COMPLEXITY

An innovative approach to parallel algorithms design
remains a key enabling factor for high performance
computing. In contrast to conventional approaches,
one must develop computational schemes which exploit,
from the onset, the concept of massive parallelism. The
CCD/CID  neural chip represents a promising hardware
technology for massively parallel computation, which
oficrs both opportunities and challenges in the design

of parallel algorithms. ‘l’his new tectlnoiogy  deji~s son~e
o! fhc most baste assrfmpt~orrs  in the analysis of cor[l-
putat ional complexity of parallel algorithrlls,  ‘1’0 clarify
t}lis, a snort  discussion is rreedcd. in what follows, .}’ x 1
vectors and .\’ x N mat rices are considered. Also, m and
a stand for multiplication and addition, respectively,

One of the most fundamental results regarding the con~-
plexity of parallel computation addresses the summa-
tion of N scalars [T,8].

Theorem 1. The summation of N scalars can t,e per-
formed in O(log N)a operations with O(,V) processors,
}Ience,

Corollary 1. A  nlatrix-vector  tnultiplication  c a n
be performed in O(log N)a +- 0(1 )m opcratiorls  with
0( N2) ilrocessors.

interestingly, the result of Theorem 1 has been assumed
to be independent of hardware technology. This re-
flects a basic feature of digital computers, which do
not allow the simultaneous summation of N numbers,
‘l’he CCD/CII)  technology defies this most basic as-
sumption, since the summation of N numbers is just
the summation of N c}!arges,  which can be performed
sirnrrltaneously.  This is a fundamental change, whicti
leads to a new set of results regarding the complexity
of parallel computation using CX31)/CIIJ architectures.
We submit that:

Theorem 2. The summation of N scalars can he per-
formed in 0(1 )a operations with 0( ,V) “processors”
(CCI)/CID  cells). ‘1’bus,

Corollary 2. A matrix-vector multiplication can he
performed in O(l)o + 0(1 )m operations wit], 0( ,Y~)
‘(processors” (CCD/CID cells).

It is important to note that the complexity of these
operations is independent of the problem size, assulr]irlg
that the chip size matches the problem.

l’he  above results are not only significant from a the-
oretical point of view, since they inlprovc the known
time-lower bounds in these computations, but are also
of practical importance. l’hey  show that the design
and analysis of parallel algorithms based on CC D/CIl)
neural architectures is drastically different from that for
conventional parallel computers. The CCI)/CII)  ct]iI~
is currently considered for performing Matrix-Vector
Llultiplication  (MVM) for which it achieves the comp-
utation time given in Corollary 2. However, in order
to output the results, k clock cycles are needed, where
k is the required number of bits. The CCI)/CII)  chip
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is Inost efficient for MVhl computations wherein the
matrix is known a priori; also of relevance are series of
hlVhfs  performed with the same matrix. I)esJ,  ite this
seemingly narrow function, the CC I)/CII>  neuroproces-
sor can be used for many applications, leading to rlew
results.

3. SIGNAL PROCESSING APPLICATION

The foundation of conventional signal processing alg~
ri(hms  is bawd  on the use of fast techniques for per-
formirig various discrete transformatiol]s  such as I) F’I’,
1) S’1’, 1X1’, I) II’T, etc..,  Consider tlw discrete Fourier
‘1’ransforrn  (I) Frl’). The 1)1’1’  can be represented by a
ilfatrix-Vector  hfultiplication  (MVN[)  with a con~puta-
tional  complexity of 0(/V2).  IIowever, for bot}l serial
and parallel computation on conventional hardware,
the l;ast  Fourier qkansform  (Fi’q’) is always preferred.
For serial computation, the FF1’ achieves a conlputa-
tional  complexity of O(N l,og N). Also, for inlplcnlenta-
tion on parallel and vector computer architectures, the
FFrI’ has been considered as the base line algorithm. In
particular, with O(N) processors, a time lower bound
of 0( fog N ) can be achieved in computing the FP1’.
Note, however, t}lat this resu It is more of a theoretical
importance than a practical one since, particularly for
large N, implernentat  ion of the algorithm to achieve
the above ti)ne lower bound would require an architec-
t ure with an excessive number of processors, and, niore
irn~)ortant]y,  a very complex processors interconnection
structure.

AS stated before, with conventional )Iardware  tecllrlol-
ogy, the time lower bound in computing a h4VM is
0( log N) by using O(N2)  processors. Note, however,
that, this result is more relevant to theory than to prac-
tice, since such an implementation of MVM requires a
very complex parallel architecture. In contrast, a prac-
tical implementation of MVM on the CCD/CIIl chip
can be performed in O(1) steps. Such a result indi-
cates  that, for eflicient  implementation of signal pro-
cessing applications on CCD/CID  chips, a new alg~
rithrnic  framework is required, which significantly dif-
fers from the conventional fast techniques framework.
In particular, the DHT, which wm one of the topics
investigated in this task, can be more efficiently imple-
mented than the FHT. In fact, while the l)HT can be
performed in 0(1) with one CCD/CIf) chip, the imple-
mentation of FHT  requires O(Log N) chips and takes
O(Log N) steps!

In the following, we first discuss how a complex DFl
can be obtained from the I)HT  by using CCI1/CID
chips. ‘l’her), a more interesting result is presented,

regarding the convolution of two signals. !f’e show
that, by usirlg CC I)/(’11) chips, the convolution  can
be i,resentcd  as a single hfVkl,  and he[lce car! be per-
formed with tile highest area and tirl)e efficiency, IVC
also lJresent a technique for area and time efficient l)FrI’
where the size of transform is much larger than the size
of the CC I)/CID chip. We conclude by outlining lJossi-
ble architectures that should enable high precision conl-
puting with charge-domain devices. hlost  of the ideas
are further expanded in a recently published article,
attached in appendix,

3,1 Cc,mputing  DFT from DHT

\Ve have considered the 1)11”1’ as the main kernel for
implementation on the CC I)/CII) chip. l’he  J)IIT arid
its inverse are given [9, 1 O] as

(1)

the kernel for 1)111  and inverse
ures 2 and 3 respectively,

In the above expressions

Cas (8) = Cos (f?)

DIIT  are shown in Fig-

+ sin (0) (3)

The first issue is the computation of the DF1 fronl the
IJIIT.  I,et the DFT and DHT of a signal g be given as
~ = J’[g] arid h = II[g] where  1’ and }] are the ]lFT
and l)HT  operators. In terms of the real and imaginary
part of ~ it follows that

j = Re[f]  + i lm[f] = E[h] - iO[h] (4)

where J; and O are even and odd operators defined as

h +  + h- hn + h_ h n  + h,v.,,
E[h] = ~ - E[hn] =  -&! = -—--

2-
(5)

h+ - h-
O[h] = z

h n  -  h _n h,, – 11.v- ,1
~ O[hn]  =  —___ .

2 2
(6)

Let h+ denote the vector h with normal orderirlg of the
elements, i.e.,

h+=[ho, hl, hN-~]’ (7)
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,

Also, let h- denote the permutation vector h as

h-  = [h~, h~_l,  . . . h,]’ (8)

\$’c note that h+ andh- can be related through a per-
Ilmtatiott  matrix P rw

h- = Phf (9)

lvhcre P is given as

1

0
*

P= ;
,

0

0-
0-

1

I

0
1

--- --- 0
--- .- -,1

“o#////#
1’ 0------0
00 -----0

Froll) Eqs. (5), (6) and (9), the expressions for Fj[h]
and O[h]  are obtained as

E[h] = ~-+;h and -  O[h] = ~;~h (lo)

klotn  I;qs. (4) and ( 10), j is obtained as

f
P+ I P -  I= ~Hg+iTHg

(11)

(12)

‘1’he matrices ~~~ l] and ~ H are constant and can
be precomputed.  Therefore, Eq. ( 12) leads to a direct
realization of DIW, as shown in Figure 4.

3.2 Fast Arcrt-Efiicim]t  Convolution Using DHT

\Yc consider the convolution problem, that is, the com-
putation of a signal g as

g=lg*~g (13)

where it is assumed that lg is the input arid 2g is krlown
a priori, and hence its I)IIT  can be precomputed,  Let

lf = F[ lg] and lh = 1{[ lg] (14)

2f == ~’[ 2d and 2h =  ~~[ 2d (15)

f = i’[g] and h = ll[g] (16)

where t’ and }1 denote the DF1’ and DHT operators,
respectively.

In accordance with Parseval’s  Theorem, we have

g  == 1’-’{ lfo Zf} =  F-l{F[  lg]o I’[2g]}  (17)

where F-1 is the inverse DFT  operator and @ indi-
cates component-by-component multiplication of two
vectors. T}le above expression forms the basis  of con-
ventional convolution algoritbnl, s. Assuming 2 f to be
known a priori, a first FFT is used to compute If in
O(NLogN)  steps, then the product of If @ 2f is ob-
tained in O(N) steps, and finally another FE’1’  is used
to compute J in O(N1,og  N) step.

IIowever, Eq. (17) is not suitable for irnplementatic,n  on
CCI>/CIII chips. Hence, a new formulation is rteeded
to take into account the fact that the only operation
that can be efficiently performed is a MVM. In terms
of 1)111’, h can be expressed[l  1] as

h =  ;[*h+@2h+  –llt-@2h- +1/j~Q>2~t-+  lh-~,2h+]

(18)
One can also express h in terms of even and odd c,per-
ators  as

h  =  E[ 2h+]0  lh+ +0[ 2h+] @ *h-

E[ 2h+]0 lh+ +0[ 2h+] @ [ P  lh+]
(19)-.—

T}le @ operation of two vectors can be described by a
diagonal matrix-vector multiplication m

lJ= 1u@2u + ~= IV2V (20)

where t i) is a diagonal matrix whose diagonal elements
are those of vector Iv. Using SUC}l a representation, Eq.
( 18) can now be expressed rra

h  = {~[ 2h+ ] + tr[ 2h+]P} ‘h+ (21)
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let us define a matrix Q in terms of the matrices j; Our approach is based on reducing the area-titne  prod-
and 6: uct by using hybrid algorithms based on a combination

Q = {@[ 2h+] +0[ ‘h+]  f’) ( 2 2 )  of F~t Iiartley ‘Ikansform (FIIT) al~d DIIT,  i .e . ,  by U S- ,

lng IIighcr radix Fllq’. To see this, let us consider again
Note that, since it is assumed t}]at 2g is known a priori, the 1)11’1’  as

the lnatrix  Q is also known a priori. From Eqs. (]9) h = Hg

and (20), it follows that where

h=Qll lg (23) h =: [h(0),  h(l), h(2),.. ,h(, v – 1)]’

and finally 9 = [9(0)  !9(1)! 9(2), “’ “,9(N – l)]t (26)

g = l~-~h= NJJQJI  lg (24) l,et us also consider the case where M = N/2. The
I)ecinlation-in-l-requency  (DIF)  of a k’HT of size N in

Eq. (22) illustrates that convolution can be performed terms of I)IIT  of size N/2 is given as
in tern)s  of a simple  Inatrix-vector  multiplication, by
defining an appropriate convolution operator. Specifi- he }l(N/2) }{(N/2)
tally, wc set 9P

ho = S(N/2) -s(N/2) g,
(27)

C = NIIQI1 (25)

‘1’llis is illustrated below.
where

9P = [9@)i9( l)!9(2), ”” 19(; – l)]’

El gr = [g(#)g(~+l),,g(N)]t
‘9 ~ c —------9 and

he = [h(0), h(2), h(4),.  ... h(N - 2)]’

/rO = [h(l),  h(3), h(5), ,h(N - 1)]’

Also, we have

S(N/2) = H(N/2)K(N/2) (28)

3.3 C o m p u t i n g  Large DI?T with Small S i z e
CC~D/CID Chips

J\re now consider the case wherein the size of the desired
transform, N, is larger than the size of the CCD/CID
ctlip, M. A direct (“brute force”) approach would be to
build an N XN I)IIT matrix by using hf x ~4 CCI)/C1l)
chips. From our discussion in Sec. 3., it then follow’s
that 2( N/A4)2 CCD/CID  chips of size M x Al would
be required for computation of a f)FT of size N.

l((N/2) = I)iag{cos(2rr1i/N)}  -t I)iag{sin(2rr1i/N)  }l’
(29)

In the above expressions Fi(N/2)  represents a 1)111’ of
size N/2, and 1) is the permutation matrix as defi~led
before. Then, Eq. (27) can be written as

L _ II(N/2) H(N/2) 9},
ho – H(N/2)}{(N/2) –H(N/2)l{(N/2) g.

(30)

‘1’be main issrrea  in devising a better approach for per- or, equivalently
forming large DFT with small size CCI)/CID  chips can
be summarized aa follows: h, ~J(N/2)(gp  + gr)

hO = fi(N/2)A’(N/2)(gp – %)
(31)

1. Preserve the computational efficiency;
l’}le flowgraph of the DIF FIIT is shown in Figure

2. Reduce the number of chips; 5. Our methodology leads to a both time- and area-
eflcient realization of a DPT  of size N. l’his  is illus-

3. Reduce the complexity of additional hardware. trated in Figure 6.
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In summary, note that, compared to the direct ap
IJroac}],  the rlumber of required CC1)/CI1)  cliips has
I,ccn reduced f r o m  8 to 4 at the cost of only t~vo
additional simple bit-serial adders. Also, since the
CCD/CIIl chip has a bit-serial data input format, per-
forming bit-serial addition on the data will increase the
computation ti]ne by only a cycle. G~neralization  to
differerlt .lf-t~.hr ratios is straightforward.

5. CONCLUSIONS

lrl tl]is paper, we have presented the massively I,arallel
CC IJ/CII) hardware architecture. ~’his  rlew hardware
technology leads to some interesting and fundamentally
different results on the comp]cxity  of parallel cotnputa-
tion.  It also require a new framework for the design
and analysis of parallel algoritbn Ls w)licb is drastically
different from that usually used for more conventional
parallel hardware architecture. In particular, we would
like to emp}lassize that on CCD/CIJ)  chips many opera-
tions can be performed in a time of 0(1) which irrl~)lies
that the computation time is Independent of the size
of the problem. l’his  is a drastic departure from classic-
al theory of parallel computational coml)]exity wherein
the bounds of both time and processors are a furlction
of problem size.

‘1’he CCI)/CID computing technology could be used
in a wide range of applications, As an exanlr)le, we
have presented some algorit}lms  for signal processing
applications. IIowever, a much wider class of prob-
lems, such as partial differential equations (PI)ES)I  for
which CC, D/CID technology can be efficiently used, are
currently under investigation. It is important to note
that the current CCI)/CIIJ technology offers a rat}ler
Ii]nited  accuracy. We have recentlv  developed sor)le
techniques to significantly
accuracy while preserving
CC1)/CII) technology.

improve the computational
fundamental advantages of
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row and column electrodes. The matrix values are encoded as charge packets that sit underncattl  these gates  in
the silicon substrate, The computatior~  occurs when the charges are transformed from the columrl gates to tile
row gates which perform capacitive sum operatiorl.
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